barcodeaddin.com

Bibliography in .NET Get DataMatrix in .NET Bibliography bar code for .NET




How to generate, print barcode using .NET, Java sdk library control with example project source code free download:
Bibliography using none toconnect none on asp.net web,windows applicationbarcode generating asp.net Pritchard, A. J. and none none D.

Salamon (1985) The linear-quadratic control problem for retarded systems with delays in control and observation. IMA J. Math.

Control Inform., 2: 335 362. Pritchard, A.

J. and D. Salamon (1987) The linear quadratic control problem for in nite dimensional systems with unbounded input and output operators.

SIAM J. Control Optim., 25:121 144.

Pritchard, A. J. and A.

Wirth (1978) Unbounded control and observation systems and their duality. SIAM J. Control Optim.

, 16:535 545. Pritchard, A. J.

and J. Zabczyk (1981) Stability and stabilizability of in nite dimensional systems. SIAM Rev.

, 23:25 52. Pr ss, J. (1984) On the spectrum of C0 -semigroups.

Trans. Amer. Math.

Soc., 284: u 847 857. Rebarber, R.

(1993) Conditions for the equivalence of internal and external stability for distributed parameter systems. IEEE Trans. Autom.

Control, 38:994 998. Rebarber, R. (1995) Exponential stability of coupled beams with dissipative joints: a frequency domain approach.

SIAM J. Control Optim., 33:1 28.

Rosenblum, M. and J. Rovnyak (1985) Hardy Classes and Operator Theory.

New York and Oxford: Oxford University Press. Rosenbrock, H. H.

(1970) State-Space and Multivariable Theory. New York: John Wiley (Wiley Interscience Division). Rudin, W.

(1973) Functional Analysis. New York: McGraw-Hill. Rudin, W.

(1987) Real and Complex Analysis, 3rd edition. New York: McGraw-Hill. Russell, D.

L. (1971) Boundary value control theory of the higher-dimensional wave equation. SIAM J.

Control, 9:401 419. Russell, D. L.

(1973a) Quadratic performance criteria in boundary control of linear symmetric hyperbolic systems. SIAM J. Control, 11:475 509.

Russell, D. L. (1973b) A uni ed boundary controllability theory for hyperbolic and parabolic partial differential equations.

Studies Appl. Math., 52:189 211.

Russell, D. L. (1975) Decay rates for weakly damped systems in Hilbert space obtained with control-theoretic methods.

J. Differential Equations, 19:344 370. Russell, D.

L. (1978) Controllability and stabilizability theory for linear partial differential equations: Recent progress and open questions. SIAM Rev.

, 20:639 739. Russell, D. L.

and G. Weiss (1994) A general necessary condition for exact observability. SIAM J.

Control Optim., 32:1 23. Salamon, D.

(1984) Control and Observation of Neutral Systems. London: Pitman. Salamon, D.

(1987) In nite dimensional linear systems with unbounded control and observation: a functional analytic approach. Trans. Amer.

Math. Soc., 300:383 431.

Salamon, D. (1989) Realization theory in Hilbert space. Math.

Syst. Theory, 21:147 164. Slemrod, M.

(1976) Asymptotic behavior of C0 semi-groups as determined by the spectrum of the generator. SIAM J. Control Optim.

, 25:783 792. Smith, M. C.

(1989) On stabilization and the existence of coprime factorizations. IEEE Trans. Autom.

Control, 34:1005 1007. Smuljan, Y. L.

(1986) Invariant subspaces of semigroups and the Lax Phillips scheme. Deposited in VINITI, N. 8009-B86, Odessa, 49p.

Staffans, O. J. (1985) Feedback stabilization of a scalar functional differential equation.

J. Integral Equations, 10:319 342..

GS1 Barcodes Knowledge Bibliography Staffans, O. J. (199 none for none 1) Stabilization of a distributed system with a stable compensator.

Math. Control Signals Syst., 5:1 22.

Staffans, O. J. (1994) Well-posedness and stabilizability of a viscoelastic equation in energy space.

Trans. Amer. Math.

Soc., 345:527 575. Staffans, O.

J. (1995a) A neutral FDE is similar to the product of an ODE and a shift. J.

Math. Anal. Appl.

, 192:627 654. Staffans, O. J.

(1995b) Quadratic optimal control of stable systems through spectral factorization. Math. Control Signals Syst.

, 8:167 197. Staffans, O. J.

(1996) On the discrete and continuous time in nite-dimensional algebraic Riccati equations. Syst. Control Lett.

, 29:131 138. Staffans, O. J.

(1997) Quadratic optimal control of stable well-posed linear systems. Trans. Amer.

Math. Soc., 349:3679 3715.

Staffans, O. J. (1998a) Coprime factorizations and well-posed linear systems.

SIAM J. Control Optim., 36:1268 1292.

Staffans, O. J. (1998b) Quadratic optimal control of well-posed linear systems.

SIAM J. Control Optim., 37:131 164.

Staffans, O. J. (1998c) Feedback representations of critical controls for well-posed linear systems.

Internat. J. Robust Nonlinear Control, 8:1189 1217.

Staffans, O. J. (1998d) On the distributed stable full information H minimax problem.

Internat. J. Robust Nonlinear Control, 8:1255 1305.

Staffans, O. J. (1998e) Quadratic optimal control of a parabolic equation.

In A. Berghi, L. Finesso, G.

Picci (eds.) Mathematical Theory of Networks and Systems, Proceedings of the MTNS98 symposium in Padova, Italy, pp. 535 538, Padova, Italy: Il Poligrafo.

Staffans, O. J. (1999a) Admissible factorizations of Hankel operators induce well-posed linear systems.

Syst. Control Lett., 37:301 307.

Staffans, O. J. (1999b) Quadratic optimal control through coprime and spectral factorisation.

Eur. J. Control, 5:167 179.

Staffans, O. J. (2001a) J -energy preserving well-posed linear systems.

Internat. J. Appl.

Math. Comput. Sci.

, 11:1361 1378. Staffans, O. J.

(2001b) Well-posed linear systems, Lax Phillips scattering and L p multipliers. In Systems, Approximation, Singular Integral Operators, and Related Topics, volume 129 of Operator Theory: Advances and Applications, pp. 445 464, Basel, Boston, and Berlin: Birkh user-Verlag.

a Staffans, O. J. (2002a) Passive and conservative continuous-time impedance and scattering systems.

Part I: Well-posed systems. Math. Control Signals Syst.

, 15:291 315. Staffans, O. J.

(2002b) Passive and conservative in nite-dimensional impedance and scattering systems (from a personal point of view). In Mathematical Systems Theory in Biology, Communication, Computation, and Finance, volume 134 of IMA Volumes in Mathematics and its Applications, pp. 375 414, New York: SpringerVerlag.

Staffans, O. J. (2002c) Stabilization by collocated feedback.

In Directions in Mathematical Systems Theory and Optimization, volume 286 of Lecture Notes in Control and Information Sciences, pp. 261 278, New York: Springer-Verlag. Staffans, O.

J. and G. Weiss (1998) Well-posed linear systems in L 1 and L are regular.

In S. Domek, R. Kaszynski, and L.

Tarasiejski (eds.) Methods and Models in Automation and Robotics, Proceedings of the Fifth International Symposium on.
Copyright © barcodeaddin.com . All rights reserved.